C. U. SHAH UNIVERSITY Summer Examination-2019

Subject Name: Design and Analysis of AlgorithmsSubject Code: 4TE05DAA1Branch:B.Tech (CE)Semester: 5Date: 19/03/2019Time: 10:30 To 01:30Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions: (14) **a**) Explain equivalence relation. **b**) Is insertion sort stable? Justify your answer. c) What is edge relaxation in Graph. **d**) Define: DFA e) Define: Spanning Tree f) Which of these is the Worst-case time complexity of Quick Sort - and cannot be expressed in lower order terms? a) O(n) b) $O(n^2)$ c) O(nlogn) d) $O(n^3)$ g) Which of the following is incorrect? Algorithms can be represented: a) as pseudo codes b) as syntax c) as programs

- d) as flowcharts
- **h**) From the following sorting algorithms which algorithm needs the minimum number of swaps:
 - a) Insertion
 - b) Bubble
 - c) Selection
 - d) Quick
- i) Arrange following rate of growth in increasing order: 2^{N} , nlogn, n²,1, n, logn, n!, n³
- j) What is optimal sub structure?
- **k**) Define: Directed acyclic graph.
- I) When is a problem said to be NP-Hard?
- **m**) Define: Dense Graph
- **n**) Define: Sparse Graph

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

a) Explain why analysis of algorithms is important? Explain worst case,

(14)

	b)	best case and average case complexity? Differentiate: Divide and conquer strategy, Greedy algorithms and dynamic programming strategy.	(7)
Q-3	a) b) c)	Attempt all questions State and prove master theorem for solving recurrences. Explain Amortized analysis, List three problems that have polynomial time algorithms. Justify your answer.	(14) (5) (5) (4)
Q-4	a)	Attempt all questions Solve the following 0/1 knapsack problem with knapsack capacity=8. I= (I^1, I^2, I^3, I^4) V= $(15,10,9,5)$ W= $(1,5,3,4)$	(14) (7)
	b)	Write an algorithm for merge sort and prove it's time complexity nlogn in all three cases.	(7)
Q-5	a) b)	 Attempt all questions Explain prim's minimum spanning tree algorithm with an example. Answer the following: Is 2ⁿ⁺¹ = O (2ⁿ)? Explain. 2) Solve the following recurrence relation: T(n) = 1 if n=1 T(n) = 2T(n/2) if n>1 	(14) (7) (7)
Q-6	a) b)	Attempt all questions What is the time complexity of finding longest common subsequence? Find LCS for the following problem: S ₁ : (A,B,A,Z,D,C) S ₂ : (B,A,C,B,A,D) Explain Floyd Warshall algorithm with example.	(14) (7) (7)
Q-7	a) b)	Attempt all questions Solve the following matrix chain multiplication problem in optimal way. M1: 5 x 4, M2: 4 x 6, M3: 6 x 2, M4: 2 x 7 Explain the 8 queen problem with example.	(14) (7) (7)
Q-8	a)	Attempt all questions Answer the following: 1) Prove that $(n+a)^b = O(n^b)$ for b>0 2) Explain exponential problem.	(14) (7)
	b)	Explain naive string matching algorithm with example. Also discuss its time complexity.	(7)

